Integrality of $G$-local systems
Christian Klevdal (University of Utah)
Abstract: Simpson conjectured that for a reductive group $G$, rigid $G$-local systems on a smooth projective complex variety are integral. I will discuss a proof of integrality for cohomologically rigid $G$-local systems. This generalizes and is inspired by work of Esnault and Groechenig for $GL_n$. Surprisingly, the main tools used in the proof (for general $G$ and $GL_n$) are the work of L. Lafforgue on the Langlands program for curves over function fields, and work of Drinfeld on companions of $\ell$-adic sheaves. The major differences between general $G$ and $GL_n$ are first to make sense of companions for $G$-local systems, and second to show that the monodromy group of a rigid G-local system is semisimple. All work is joint with Stefan Patrikis.
algebraic geometrynumber theory
Audience: researchers in the topic
Series comments: The Number Theory and Algebraic Geometry (NT-AG) seminar is a research seminar dedicated to topics related to number theory and algebraic geometry hosted by the NT-AG group (Nils Bruin, Imin Chen, Stephen Choi, Katrina Honigs, Nathan Ilten, Marni Mishna).
We acknowledge the support of PIMS, NSERC, and SFU.
For Fall 2025, the organizers are Katrina Honigs and Peter McDonald.
We normally meet in-person in the indicated room. For online editions, we use Zoom and distribute the link through the mailing list. If you wish to be put on the mailing list, please subscribe to ntag-external using lists.sfu.ca
| Organizer: | Katrina Honigs* |
| *contact for this listing |
